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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 6343

This paper studies the effect of subjective beliefs about 
HIV infection on fertility decisions in a context of high 
HIV prevalence and simulates the impact of different 
policy interventions, such as HIV testing programs and 
prevention of mother-to-child transmission, on fertility 
and child mortality. It develops a model of women’s 
life-cycle, in which women make sequential fertility 
decisions. Expectations about the life horizon and 
child survival depend on women’s perceived exposure 
to HIV infection, which is allowed to differ from the 
actual exposure. In the model, women form beliefs 
about their HIV status and about their own and their 
children’s survival in future periods. Women update 
their beliefs with survival to each additional period as 
well as when their HIV status is revealed by an HIV test. 

This paper is a product of the Human Development and Public Services Team, Development Research Group. It is part 
of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy 
discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. 
The author may be contacted at gshapira@worldbank.org.  

Model parameters are estimated by maximum likelihood 
with longitudinal data from the Malawi Diffusion and 
Ideational Change Project, which contain family rosters, 
information on HIV testing, and measures of subjective 
beliefs about own HIV status. The model successfully fits 
the fertility patterns in the data, as well as the distribution 
of reported beliefs about own HIV status. The analysis 
uses the model to assess the effect of HIV on fertility by 
simulating behavior in an environment without HIV. The 
results show that the presence of HIV reduces the average 
number of births a woman has during her life-cycle by 
0.15. The paper also finds that HIV testing can reduce 
the fertility of infected women, leading to a reduction of 
child mortality and orphan-hood.  
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1 Introduction

Both fertility and HIV prevalence rates in Malawi are among the highest in the world, with

the total fertility rate at 5.7 births per woman and the HIV prevalence rate at 10.6 percent.1

Malawian women make fertility decisions in an environment characterized by high adult

and child mortality, exacerbated by mother-to-child HIV transmission. Out of a population

of about 15 million, it is estimated that 68,000 die annually from AIDS and that 560,000

children under the age of 17 have lost at least one parent to the disease.2

There are many policy interventions aimed at reducing HIV in Malawi and other Sub-

Saharan African countries. These include HIV testing programs, information campaigns,

and antiviral distribution programs. Evaluating the e�ects of such policies on outcomes such

as number of births, child mortality, and orphan-hood requires an understanding of how

women's fertility decisions are a�ected by the presence of HIV.

An important aspect of the environment in Malawi is that women are typically uncertain

regarding their own HIV status. An infected person can live for many years with no symp-

toms, and testing was not widely available until relatively recently. The median survival

time after infection, without treatment, is about 10.4 years.3 During most of this time, an

infected person is in a clinical latency stage and experiences few or no symptoms.4

In addition to being uncertain about own HIV status, women often express beliefs about

HIV risk that di�er substantially from actual risk. Studies using the Malawi Di�usion and

Ideational Change Project data show that individuals in rural Malawi tend to overestimate

both the probability of being HIV-infected (Anglewicz and Kohler, 2009) and the HIV preva-

lence in their community (Anglewicz, 2007). Anglewicz and Kohler (2009) attribute these

high risk assessments to overestimated probabilities of transmission. More than 95 percent

of respondents believe that transmission from a single instance of unprotected intercourse

1Malawi Demographic and Health Surveys (2010)
2UNSAID/WHO/UNICEF Epidemiological Fact Sheets (2008)
3Todd et al. (2007). Estimate for infected adults in Eastern and Southern Africa
4Morgan et al. (2002), for example, �nd median time from infection to AIDS to be 9.4 years and median

time from AIDS to death to be 9.2 months in rural Uganda.
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with an infected person is highly likely or certain; however, studies estimate that it can be as

low as 1 per 1,000 encounters in the absence of an increased viral load (Gray et al., 2001).5

Women's perceptions of HIV risk and of their own HIV status a�ect beliefs about their

own and their children's life expectancy, which in turn may in�uence life-cycle fertility

choices. In this paper, I study the determinants of women's reproductive decisions in Malawi,

taking into account uncertainty about HIV status and di�erences between perceived and ac-

tual HIV infection risk. I investigate how HIV a�ects fertility and simulate the impact of

di�erent policy interventions, such as HIV testing programs and prevention of mother-to-

child transmission, on fertility and child mortality.

To this end, I develop a dynamic discrete-choice life-cycle fertility model in which ex-

pectations about the life horizon and child survival depend on a perceived infection hazard.

A woman makes annual pregnancy decisions from the time of marriage until she becomes

infecund. She maximizes utility, which depends on her number of children, household con-

sumption, and pregnancies, subject to a per-period budget constraint. The woman faces

uncertainty regarding future income, HIV status, and the survival of herself and her children

in future periods.

A woman's perceived infection hazard is allowed to di�er from her actual infection hazard

to re�ect the misperceptions about HIV risk observed empirically. The perceived hazard rate

for each period is a function of a woman's characteristics, such as her age, region of residence,

marital status, and schooling level. To account for unobservable factors, the hazard rate also

incorporates heterogeneity in the form of a discrete number of unobserved types.6

Given that HIV is initially asymptomatic, the model assumes that a woman does not

5The viral load is high in the few weeks following infection and increases again as an infected person
develops AIDS. Infectivity increases with viral load as well as with other conditions, such as the existence of
other STDs. Powers et al. (2008) review the studies estimating HIV infectivity and discuss di�erent factors
that increase infectivity. Note however that even a low transmission rate such as 0.001 can translate into
a nontrivial probability of infection during a year of partnership. Gray et al. (2001) �nd average frequency
of intercourse to be about 106 acts per year, implying about a 10 percent chance of transmission given this
transmission rate.

6The probability of being a certain type is a function of the woman's characteristics and follows a multi-
nomial logit speci�cation.
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observe realizations of the infection process and therefore does not know her HIV status.

Assuming she knows the mortality process associated with HIV infection, however, survival

during each additional period gives her information about her status. Speci�cally, she reduces

her subjective probabilities of having become infected in each of the past periods based on

the fact that she is still alive. According to these probabilities and given the mortality

process, she updates her survival expectations. HIV infection also increases child mortality

probabilities through mother-to-child transmission. In the model, the woman also updates

expectations about the survival of each of her children depending on the probability assigned

to her having been infected at the time of birth.

The dynamic fertility model is estimated using the Malawi Di�usion and Ideational

Change Project (MDICP) dataset, a rich longitudinal dataset collected in rural areas of

three di�erent districts of the country. The data contain extensive information on more

than 4,000 individuals at the individual and household level. The three sampled regions

vary signi�cantly in several aspects that are potentially relevant for the analysis, such as

HIV prevalence rates, polygamy rates, and schooling levels. A unique feature of the MDICP

data is that they include measures of subjective expectations regarding a range of outcomes,

including the likelihood respondents assigned to being HIV-infected at the time of the inter-

view. The expectations data were collected using a novel bean-counting method, developed

by Delavande and Kohler (2009), which is appropriate for populations with low levels of nu-

meracy. Delavande and Kohler (2009) �nd that the reported subjective expectations follow

basic properties of probabilities and that the assessments of HIV-infection vary meaningfully

with observable characteristics associated with di�erent levels of HIV prevalence. I use a

subsample of 1006 married women who were interviewed at least once during the 2006 and

2008 rounds, when family rosters and subjective expectations were collected.

Since 2004, each round of data collection included HIV testing of respondents and the

prevalence rate was found to be about seven percent.7 Although individuals who received

7HIV prevalence is lower in rural areas than in urban areas. The prevalence in the MDICP sample is
lower than the rural 2004 DHS prevalence because the sample does not include peri-urban areas such as
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positive test results assign signi�cantly higher likelihood to being infected two years later

relative to individuals who received negative test results, some individuals who tested positive

later assign a probability of less than one to being infected. I therefore assume that a woman

assigns a probability to the accuracy of the test. Given the test result, the woman updates

the probabilities assigned to infection and the corresponding probabilities of survival.

I structurally estimate the model parameters using maximum likelihood and then use the

estimated model to perform several counterfactual simulations. First, I simulate life-cycle

fertility in an environment with no HIV exposure. The results indicate that the presence of

HIV has an average negative e�ect on fertility. Overall, women in the no-HIV environment

have on average 0.15 more births over their life-cycle. However, there is heterogeneity in the

e�ect of the presence of HIV on fertility, with some women decreasing the number of births

and fewer women increasing it. I also simulate the e�ects of prevention of mother-to-child

transmission and HIV testing programs on fertility outcomes. Although these programs are

not necessarily intended to in�uence fertility, they have the potential to a�ect reproductive

choices by altering beliefs about HIV status, life expectancy, and child survival. Such policy

interventions are implemented in Malawi and are continuously expanding in scope. I �nd

these programs to have negligible e�ects on the overall number of births. However, elimi-

nation of mother-to-child transmission will reduce fertility by infected women who respond

to child mortality by additional pregnancies either because they have high marginal utility

of an additional child or because they assign low likelihood to being infected. I also �nd

that HIV testing can reduce fertility by HIV-positive women, leading to a reduction in child

mortality and orphan hood. However, the e�ect of testing is limited by the partial updating

of beliefs.

trading centers (Obare et al., 2009).
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1.1 Related Literature

Several studies analyzed the response of fertility in Sub-Saharan Africa to the HIV/AIDS

epidemic and reached mixed conclusions. Young (2005) studies the e�ect of the HIV/AIDS

epidemic on the welfare of future African generations. He concludes that thanks to a negative

e�ect on fertility, the epidemic, on net, will increase future per capita consumption.8 He

attributes the reduction in fertility to an unwillingness to engage in unprotected sexual

activity and increasing labor opportunities for women because of scarcity of labor. He shows

empirically a negative relationship between fertility and HIV prevalence using retrospective

fertility histories and seroprevalence in antenatal clinics in South Africa. Using time series

cross-country data on fertility and HIV prevalence rates, Young (2007) �nds a similar e�ect.

Kalemli-Ozcan (2006), using similar types of data, shows that regressing total fertility rate on

HIV/AIDS prevalence can yield both positive and negative e�ects with di�erent estimation

strategies and di�erent measures of HIV prevalence.

Later studies use the cross-country data from the latest rounds of the Demographic

and Health Surveys (DHS). These surveys are nationally representative and contain results

of HIV testing of respondents. Fortson (2009) and Juhn et al. (2008) �nd lower fertility

rates of HIV-infected women than of HIV-uninfected women; however, they �nd no e�ect

of local prevalence rates on the fertility of uninfected women and an overall insigni�cant

aggregate e�ect of HIV on fertility. Fink and Linnemayr (2009), linking historical data from

World Fertility Surveys (WFS) with the DHS data, argue that while HIV does not have

a signi�cant e�ect on aggregate fertility levels, it a�ects di�erently women depending on

their educational attainment. They �nd that, in the presence of HIV, more educated women

reduce fertility more than uneducated women. Analyzing the Malawi DHS surveys from 2000

and 2004, together with HIV rates obtained from antenatal clinics, Durevall and Lindskog

(2011) conclude that although the HIV/AIDS epidemic has small impact on the number of

8According to Young (2005), the positive e�ect of reduces fertility dominates a negative e�ect of reduced
human capital accumulation by orphans.
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births a woman experiences it a�ects timing of fertility. Women in districts with higher HIV

prevalence are more likely to give birth at younger ages and are less likely to do so when

they are over 29 years.

My analysis di�ers from these studies both in the empirical approach and in the type

of data used in the analysis. The data on individuals' subjective beliefs allow me to ex-

ploit heterogeneity within communities, which the use of data on local HIV prevalence only

does not allow. The structural estimation of a model enables me to perform counterfactual

simulations to assess fertility patterns in di�erent environments.

Many economists have studied the determinants of fertility in di�erent environments.9

My analysis is most closely related to studies that model fertility decision-making as a

sequential process (Heckman and Willis (1974)) and studies of fertility in environments with

non-negligible infant and child mortality risk (Wolpin, 1984; Sah, 1991; Mira, 2007). Wolpin

(1984) presents an estimable dynamic discrete-choice fertility model in an environment where

infant survival is uncertain and uses the model to study the response of fertility choices to

experienced infant mortality. Mira (2007) uses a similar modeling framework and extends it

by introducing heterogeneity in infant mortality risk across mothers. Parents in his model

learn about a family-speci�c component of infant mortality risk throughout their life-cycle.

Fertility choices are in�uenced by how the parents adapt to the information received from

infant survival and mortality.

2 Model

2.1 General Setup

I develop a dynamic discrete-choice life-cycle model of woman's fertility decisions in an

environment of exposure to HIV infection. Women maximize subjective expected utility by

making sequential binary fertility choices in a framework similar to that of Wolpin (1984) and

9Joseph Hotz et al. (1997), Schultz (1997), and Wolpin (1997) survey the literature on fertility.

7



Mira (2007). Speci�cally, a woman makes annual decisions of whether to become pregnant

beginning at the age of her marriage and ending when she becomes infecund at a �xed age

F (assumed to be 45). A woman gives birth in the period following the one in which she

became pregnant. If never infected, a woman survives with certainty to age T (assumed

to be 60). An infected woman might die prior to reaching the terminal model period. HIV

infection of a mother at time of birth also increases mortality probabilities of children of ages

zero to three. Given that HIV infection is asymptomatic for the majority of the infection

duration, women cannot observe their HIV status.

Women are heterogeneous with respect to a group of characteristics that are treated as

exogenous and constant determinants of their choices. These characteristics include region

of residence, completed schooling level, the size of the household's land plot, age of marriage,

and whether a woman is married to a polygamous husband. Women are also of di�erent

discrete unobserved types, which are incorporated in the model to account for unobservable

permanent factors which might a�ect preferences as well as exposure to HIV.

2.2 Preferences

Each period, a woman receives a utility �ow from household consumption (C), her number

of children (N), pregnancy status (p), and a time-varying preference shock (εp) which is iid

across time and women. The per-period utility function is given by

U(t) = C(t)φ

φ [1 + exp (λ1N(t))] + λ2,r,e,m,µN(t) + λ3,r,e,m,µN(t)2 − (λ4,t + εp(t)) p(t)− (λ5 + λ6t)p(t)p(t− 1),

εp(t) ∼ iidN
(
0, σ2

p

)
.

The utility function exhibits constant relative risk aversion (CRRA) in consumption and

includes an interaction term between household consumption and the number of children to

re�ect consumption being divided among more individuals as the household size increases.

The utility is quadratic in the number of children. The parameters related to preference

for children, λ2 and λ3, are allowed to vary with region of residence (r), schooling level (e),

8



polygamy (m), and unobserved type (µ).10 The utility function also incorporates a non-

pecuniary cost (or bene�t) associated with being pregnant. This cost includes a stochastic

preference shock as well as a deterministic age-dependant element (λ4,t). The cost of preg-

nancy changes if a woman was pregnant in the previous period (λ5). The cost of consecutive

births is allowed to change with the age of women (λ6).

The speci�cation of the model implies perfect control over conception and contraception.

I could have instead introduced a cost of contraceptives, a probability of conception condi-

tional on not wanting to become pregnant and a probability of not conceiving conditional

on trying. Using data on births only, however, I cannot separately identify these elements.

Instead, these elements will be absorbed into the cost of pregnancy (both deterministic and

stochastic) and the preference for children. For example, having the cost of pregnancy change

with age captures physiological factors which vary the propensity to conceive during di�erent

stages of a woman's life-cycle. The added cost of consecutive births enables the model to

generate patterns of birth spacing.

2.3 Income and Consumption

It is assumed that households cannot borrow or save, which implies household consumption

(C) equals the household's income (Y ). The household's income is exogenous and stochastic.

I specify a parsimonious household income function that is appropriate for the context of

subsistence agriculture. I assume that the logarithm of income is distributed as

ln (Y (t)) = θ1 + θ2Balaka + θ3Mchinji + θ3Land High + θ4N(t) + θ5t+ θ6t
2 + εy(t),

εy(t) ∼ iidN
(
0, σ2

y

)
.

(1)

Income depends on region of residence (Balaka, Mchinji), size of household's land plot (Land

High), the age of the woman (t), the number of children (N), and a time-varying income

10The majority of respondents in each of the three sites of the MDICP dataset are of di�erent tribal groups.
The tribes di�er in their practices of lineage and residence after marriage which might a�ect preferences for
children.
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shock (εy).
11 Realization of the income shock occurs after the fertility decision is made.

Therefore, pregnancy decisions are based on expected income.

2.4 Perceived Infection Hazard

A woman's perceived exposure to HIV infection is modeled as a hazard process.12 Let h(t)

be the probability a woman assigns to getting infected at period t, conditional on being

HIV-negative until then. The perceived hazard rate for period t is given by

h(t) =
1

1 + exp (−x(t)′β)
, (2)

where x(t) is a vector containing the woman's characteristics, the duration of her marriage,

her age and age squared, and a constant. The parameters related to the constant, age and

age squared are allowed to di�er for unobserved types.13

The perceived unconditional probability of getting infected at period t, P (t), is given by

P (t) = h(t)

t−1∏
k=1

(1− h(k)) . (3)

2.5 Survival Expectations

A woman is assumed to know the mortality processes associated with HIV infection (for both

adults and children). Survival to each additional period provides her with information about

her HIV status. Speci�cally, she reduces the probability of having gotten infected in each past

period. Given these probabilities and the mortality process, the woman assigns probabilities

to survival to each future period. The woman also updates expectations about the survival of

children of ages zero to three in future periods. Conditional on the probabilities she assigns

11The Malawi Multiple Indicator Cluster Survey 2006 estimates that 27.5 percent of children aged 5 to 11
are involved in at least one hour of economic work or 28 hours of domestic work per week. A more natural
speci�cation of the income function might take into account the ages of the children; however, I do not keep
track of the ages of children above age 3 in the state space to reduce computational burden.

12Perceived and actual exposures to HIV infection are treated as exogenous to women's behavior because
there is no variation in self reports of sexual behavior by women in the data. All but very few married
women report having sex with their husbands and not having extramarital partners.

13The detailed speci�cation of the perceived infection hazard function is presented in the appendix.
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to having been infected at times of giving birth, she assigns probabilities to the survival of

each of her children to future periods.

Women's beliefs are also updated by receiving an HIV test result. MDICP respondents

did not anticipate being o�ered HIV testing, and almost all of the respondents agreed to get

tested. Because of these features of the data, I abstract from modeling the decision to get

tested. Instead, I treat the HIV testing as an unanticipated revelation of HIV status. I �rst

present the updating of expectations about life horizon without testing and then proceed to

discuss the updating with testing.

2.5.1 Updating Survival Expectations without HIV Testing

Updating probabilities assigned to infection in di�erent periods:

Let I(τ, t) be the probability a woman assigns to getting infected at period τ, conditional

on being alive at t. The probability assigned to having gotten infected at a past or present

period τ is given by

I (τ, t) =
Pr (got infected at τ & alive at t)

Pr (alive at t)
=

P (τ)S (τ, t)

1−
∑t
k=1 P (k) (1− S(k, t))

, t ≥ τ, (4)

where S (τ, t) is the probability a woman who gets infected at period τ survives to period

t. The probability assigned at period t to being HIV-positive is given by the summation of

the probabilities assigned to infection happening in all periods up to t:

B(t) =

t∑
k=1

I (k, t) . (5)
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Probabilities assigned to survival in future periods:

The probability a woman assigns at time t to being alive at the following period is given by

π (t, t+ 1) =
(∑t

k=1 Pr (got infected at k) Pr (alive at t+ 1 | got infected at k & alive at t)
)

+ Pr (not infected at t)

=
∑t
k=1

(
I(k, t)S(k, τ)

S(k, t)

)
+ 1−B(t).

(6)

Probabilities assigned to child survival:

Let S−c (j) (S+
c (j)) be the probability that a child born to an HIV negative (positive) woman

survives to age j. The probability a woman assigns at period t for a child of age a to survive

to the following period depends on the probability she assigns to having been infected at the

time of the child's birth and is given by

πac (t, t+ 1) = Pr(mother was HIV-positive at birth)

×Pr (child alive at t+ 1 | mother was HIV-pos at birth & child alive at t)

+ Pr(mother was HIV-negative at birth)

×Pr (child alive at t+ 1 | mother was HIV-neg at birth & child alive at t)

=
(∑t−a

k=1 I(k, t)
)
S+
c (a+1)

S+
c (a)

+
(

1−
∑t−a
k=1 I(k, t)

)
S−c (a+1)

S−c (a)
.

(7)

2.5.2 Updating Survival Expectations with HIV Testing

HIV testing provides a woman information about her infection status at the time of the

test; however, it does not provide her with any new information about when she might have

gotten infected. I assume women do not use the test result to update their perceived infection

12



hazard process.

Given that some of the women who received positive test results assigned some likelihood

to not being infected after the test, I assume that women assign a probability to the accuracy

of the test result. Speci�cally, she assigns probability ptest to the test result being her

actual status and probability 1− ptest to the test result being uninformative. Therefore, the

probability a woman assigns to being HIV-positive when receiving a test result at period

ttest, denoted as B̂ (ttest), is

B̂(ttest) = (1− ptest)B(ttest) + ptest1 {positive test result} ,

where B(ttest) is the probability assigned at period ttest to being HIV-positive without having

been tested.

To compute the subjective life expectancies in periods after ttest, it is necessary to recover

the post-test probabilities women assign to infection in each period. I de�ne P̂ (t) to be the

post-test update of P (t) (de�ned in Equation 3). These probabilities can be recovered using

the fact that a test result does not provide the woman with any new information about when

she might have gotten infected. Let G(τ, ttest) be the probability assigned to having gotten

infected at τ, conditional on being HIV-positive at ttest. This probability does not change

after learning the test result. The after-test probability assigned at ttest to having gotten

infected in a past period τ can be written as

Î (τ, ttest) = Pr (got infected at τ | HIV-positive at t) Pr (HIV-positive at t)

= G (τ, ttest) B̂ (ttest) = I(τ, t)
B(t) B̂ (ttest) , τ = 1, ..., ttest.

(8)

In addition, similar to Equation 4, the after-test probability assigned at ttest to having gotten

infected in a past period τ is also given by

Î (τ, ttest) =
P̂ (τ)S (τ, t)

1−
∑t
k=1 P̂ (k) (1− S(k, t))

, τ = 1, ..., ttest. (9)
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By (8) and (9), I get

P̂ (τ)S (τ, t)

1−
∑t
k=1 P̂ (k) (1− S(k, t))

=
I(τ, t)

B(t)
B̂ (ttest) , τ = 1, ..., ttest. (10)

I can solve for P̂ (1), ..., P̂ (ttest) by solving the system of ttest equations with ttest unknowns

(the solution of the system of equations is presented in the appendix). The probability

assigned to infection at a future period t is given by

P̂ (t) = h(t)
t−1∏
k=1

(
1− P̂ (k)

)
, t > ttest.

Given the vector P̂ =
(
P̂ (1), ..., P̂ (T − 1)

)
, the perceived probabilities of infection and

survival in periods following the test are constructed as in equations (4) to (7).

2.6 Model Solution

The woman's problem can be formulated as a discrete-choice discrete-time stochastic dy-

namic program. Let Ω(t) be the state space at time t, consisting of all of the information

relevant to decision-making that the woman has available at that time. Speci�cally, it con-

tains the realized preference shock, the number of living children, ages of young children

at risk of dying, whether she was pregnant in the previous period, and her testing history

(period and result of each test). It also contains her �xed characteristics: her region of

residence, schooling level, age of marriage, polygamy status of her husband, and the land

owned by the household. Note that life horizon expectations are fully determined by Ω(t);

therefore, there is no need to include the expectations in the state space.

Let V (Ω(t), t) be the value function, that is, the maximized present discounted value

of lifetime utility. Let V f (Ω(t), t) be the alternative-speci�c value function, that is, the

value if choice f is taken, with f indicating pregnancy status. The Bellman equation of the
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optimization problem is

V (Ω(t), t) =



max
[
V 0 (Ω(t), t) , V 1 (Ω(t), t)

]
, t = 1, ..., F − 1

EU0 (t, Ω(t)) + δπ (t, t+ 1)E (V (Ω(t+ 1), t+ 1 | p(t) = 0, Ω(t))) , t = F, ..., T − 1

EU0 (T, Ω(T )) , t = T

V f (Ω(t), t) = EUf (t, Ω(t)) + δπ (t, t+ 1)E (V (Ω(t+ 1), t+ 1 | p(t) = f, Ω(t))) , f = 0, 1, t = 1, ..., F − 1,

where U1 (t, Ω(t)) represents a utility �ow at state Ω(t) with pregnancy, and U0 (t, Ω(t))

represents the utility �ow without pregnancy. The expectation associated with �ow utility is

taken over the present income shock. The expectation associated with the next-period value

function is taken over future income and preference shocks as well as over child survival.

V 1 (Ω(t), t) is strictly increasing in εp(t); however, V
0 (Ω(t), t) is constant in εp(t) because

the preference shock enters the utility �ow only if the woman becomes pregnant. Let Ωd (t)

be the set of deterministic elements of the state space, that is, the set without εp(t). For any

Ωd(t) there is a unique critical value ε∗(Ωd(t), t) such that V 1 (Ω(t), t) = V 0 (Ω(t), t) . The

solution to the woman's optimization problem is to become pregnant only if the preference

shock is bigger than the corresponding critical value.

2.7 HIV/AIDS and Fertility Outcomes

There are several channels through which the presence of the HIV/AIDS epidemic can a�ect

fertility outcomes in the framework presented above. These channels are driven by both

actual and perceived exposure to infection. They operate simultaneously and can potentially

have opposing in�uences on the timing and number of births as well as on the experienced

child mortality. In terms of the e�ect of actual HIV infection, the shorter life-span of women's
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life-cycle will reduce the number of periods during which they can get pregnant and will

therefore have an obvious negative e�ect on the overall average number of births. The

increase in child mortality, on the other hand, can increase fertility through a replacement

behavior. If there is a decreasing marginal utility from an additional child, the loss of a child

will increase fertility in the periods after the loss.

The impact of the subjective beliefs on fertility outcomes is even more ambiguous. As

described in the previous subsection, a woman compares the expected value of lifetime utility

with and without a current pregnancy. With higher likelihood assigned to being infected, a

woman assigns less likelihood to her and her child's survival and therefore perceives fewer

periods during which she would get utility �ows from having the additional child. Given that

the non-pecuniary cost of pregnancy is not a�ected by beliefs about HIV status, this implies

that the woman would be less likely to get pregnant if she assigns higher probability to being

infected. On the other hand, if a woman has high valuation for children, she might choose to

increase her fertility when she assigns some probability to being infected. She would do so

in expectation that a larger share of her children will not survive. In addition, even without

a change in the total number of births a woman gives, the presence of HIV might change the

timing of her pregnancies. A woman might assign no or small likelihood to being infected

in the present but decide to give birth at younger ages if she perceives a higher likelihood to

being infected in the future. This will depend on her perceived hazard rates throughout the

fertile stage of her life-cycle.

3 Data

3.1 Malawi Di�usion and Ideational Change Project

Malawi is a landlocked country located in Southeast Africa. It has a population of about

15 million, comprised of di�erent ethnic and religious groups. 81 percent of the population
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lives in rural areas and relies mostly on subsistence agriculture.14 The Malawi Di�usion

and Ideational Change Project (MDICP) data have been collected since 1998 in rural areas

of three districts in Malawi: Balaka in the south of the country, Mchinji in the center, and

Rumphi in the north.15 The di�erent rounds of the longitudinal dataset contain extensive in-

formation on more than 4,000 men and women, at the individual, household and community

levels.

A unique feature of the MDICP dataset is that it includes measures of subjective likeli-

hoods respondents assign to being HIV-positive. The subjective expectations were collected

using an elicitation methodology developed by Delavande and Kohler (2009) for a develop-

ing country context with low levels of literacy and numeracy.16 Respondents were provided

with ten beans and a plate. They were asked to allocate di�erent number of beans on the

plate to express the likelihood that di�erent events will be realized. The respondents were

instructed that zero beans re�ect certainty that an event will not happen, more beans re�ect

higher likelihood that an event happens, and that ten beans imply certainty about the event

happening. The likelihood assigned to being HIV-positive is measured by asking: �Pick the

number of beans that re�ects how likely you think it is that you are infected with HIV/AIDS

now.� Delavande and Kohler (2009) �nd that reported subjective expectations follow basic

properties of probabilities and that the assessments of HIV-infection vary meaningfully with

observable characteristics associated with di�erent levels of HIV prevalence.

Since 2004, HIV testing has been o�ered to all respondents during data collection. The

take-up rates of the tests were high, above 90 percent in all waves. The HIV prevalence rate

in the sample was 6.9 percent Obare et al. (2009). In 2004, test results were available �ve to

seven weeks after testing. The testing component of the survey was linked to an experiment

that is described and analyzed by Thornton (2008). Respondents were assigned vouchers

14data.worldbank.org
15Detailed information on the Malawi Di�usion and Ideational Change Project can be obtained at

http://www.malawi.pop.upenn.edu/.
16Attanasio (2009) and Delavande et al. (2010) review existing subjective expectations data from devel-

oping countries.
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for a monetary reward, redeemable upon return to temporary Voluntary Consulting and

Testing (VCT) sites where results where provided. The VCT sites were set up such that all

respondents' homes are within �ve kilometers distance from at least one site. Approximately

70 percent of those tested chose to pick up their results. In 2006 and 2008, rapid blood tests

were adopted, eliminating the time delay between testing and provision of results.

For my analysis, I am using a subsample of married women in their �rst marriage, who

did not become pregnant from a relationship with men other than their future husbands

prior to marriage. I restrict the sample to women in unbroken �rst marriages because I

abstract from modeling any decisions related to marriage or partnership. I also restrict the

sample to include only women who were interviewed in at least one of the 2006 and 2008

rounds. Data collected in these rounds include family rosters, containing information on all

children of respondents, and the elicitation of subjective expectations. I exclude women who

were born before 1960, because the last age of fertility in the model is assumed to be 44 and

2004 is the earliest year included for fertility outcomes. After excluding additional women

for missing information, the estimation sample consists of 1006 women.

Tables 1 to 4 and Figures 1 and 2 provide descriptive statistics for the variables used

in the analysis. The average age of women in the sample is 26.6 in 2004. 29 percent of

the sample resides in Balaka (south), 35 percent in Mchinji (center), and 36 percent in

Rumphi (north). The median number of years of schooling is 5. The women in Balaka

have the lowest schooling levels with 31 percent of women never having attended school and

only three percent having attended some secondary school. The women in Rumphi have

the highest schooling levels, with 99 percent of women ever having attended school and 26

percent some secondary school. The average age of marriage in the overall sample is 17.5

and is similar across regions. Polygamy is most prevalent in Rumphi, with 33 percent of

the women in the sample from that region married to a polygamous husband. The share of

polygamous women is 27 percent in Mchinji and 20 percent in Balaka. As shown in Table

2, HIV testing take-up rates were high in all the rounds: 87.9 percent in 2004, 93.3 percent
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in 2006, and 94.6 percent in 2008. The percentage of women who tested positive was 2.9

percent in 2004, 3.1 percent in 2006, and 3.7 percent in 2008.

Figure 1 depicts the distribution of the likelihood women assigned to being HIV-infected

in the 2006 and 2008 rounds (pooled), measured by beans on a scale of zero to ten. Fifty

percent of the reports were of zero beans. The percentage of women who chose each category

decreases with the number of beans, except for the 5-bean category. Fewer than one percent

chose the 10-bean category. Table 3 shows the average number of beans. The overall sample

average is 1.52 beans. The average number of beans chosen in each region conforms to the

ranking of HIV prevalence in the general MDICP sample. The averages are 1.78 beans in

Balaka, 1.69 in Mchinji, and 1.16 in Rumphi. The 2004 HIV prevalence rates for these regions

are 7.9 percent in Balaka, 6.4 percent in Mchinji, and 4.4 percent in Rumphi. The table also

shows that average beliefs decrease with schooling and are higher for women married to a

polygamous husband.

Figure 2 depicts the distribution of the likelihood women assigned to being HIV-infected

after receiving HIV test results. Because the testing component of the survey was conducted

after the interview components, these are beliefs reported two years after the tests (the

subsequent round of data collection). Because of low HIV prevalence and high attrition of

infected women, there are only 18 women who report their beliefs two years after receiving

a positive test result. The average number of beans allocated by these women is 4.67 beans,

which is signi�cantly higher then the average of 1.5 beans reported by women who received

a negative test result. Most of the women who received a positive test result assign at least

some likelihood to not being HIV infected.

I obtain information about births from family rosters that were collected in 2006 and

2008. Respondents were asked to list all of the children ever born to them, but year of

birth is missing for children who died more than two years before the interview. I therefore

use only birth outcomes reported for the years 2004 to 2007. Depending on the year of

marriage, year of birth, and the rounds in which the woman participated, I observe between
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1 and 4 potential fertility years for women of ages 16 to 45. In total, I observe 3,148 years

of potential fertility with births in 920 of them (29.2 percent). Table 4 shows the annual

birth probabilities of married women by 5-year age groups. The annual birth probabilities

decrease from 0.405 for ages 16 to 20 to 0.06 for ages 41 to 45.17

3.2 Malawi Second Integrated Household Survey

The MDICP data do not include detailed measures of household consumption. For this

reason, I use the Malawi Second Integrated Household Survey (IHS-2) to impute a better

measure of consumption of households in the MDICP sample. The dataset, gathered by

the Malawi National Statistics O�ce in 2004-2005, is part of the World Bank's Living Stan-

dards Measurement Study program. It includes comprehensive data on consumption and

expenditures of households, as well as on local prices. Speci�cally, the dataset includes a

measure of annual consumption expenditure aggregates in real value. The survey was �elded

in 26 out of Malawi's 27 districts, including all three MDICP districts. After restricting the

sample to households in the districts covered by MDICP and excluding households without

a woman as a head of the household or as a wife of the head, the estimation sample includes

612 households. 220 of these households are from Balaka, 188 from Mchinji, and 204 from

Rumphi.18

3.3 Mortality Statistics

I supplement the use of the MDICP data with statistics about survival after infection and

child mortality from other studies that use data from samples with repeated HIV testing

and frequent follow-ups. These data provide more precise information on times of infection

and death than MDICP does. Hallett et al. (2008) estimate probabilities of survival after

infection by �tting a Weibull distribution to survival data presented by Todd et al. (2007)

17The annual birth probability is de�ned as the proportion of alive and married women of speci�c age that
give birth.

18Detailed information on the Malawi Second Integrated Household Survey can be obtained from the
World Bank's website at http://econ.worldbank.org.
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from 5 studies in Eastern and Southern Africa before highly active antiviral therapy. The

probability of survival to year t conditional on getting infected at year τ is estimated as

S (τ, t) = exp

(
−
[
t− τ
ψτ

]2
)
,

with ψτ reducing with age of infection. (Parameter estimates and median survival time

are presented in Table 5.) The mortality hazard increases with both duration and age of

infection. The median survival time of an individual infected at ages 15 to 19 is 13.3 years,

while it is 8.4 years for an individual who gets infected at ages 40 to 44.

Data from di�erent longitudinal studies with repeated assessments of HIV status of adults

show higher mortality rates of children born to infected women. In these studies, the HIV

status of the children was generally not available. Controlling for di�erent background

characteristics, mortality rates of children born to HIV-infected mothers were estimated to

be about three times higher than those for children born to uninfected mothers, with the

e�ect lasting throughout childhood years (Newell et al., 2004). Crampin et al. (2003) report

child mortality rates by status of mother at birth from a retrospective cohort study with

more than 10 years of follow-up in Karonga district in Northern Malawi. The rates are

reported in Table 6.

4 Estimation

The main estimation sample contains data on 1006 women from the MDICP dataset. The in-

formation on the ith woman consists of up to 4 years of pregnancy choices
(
pi(t), t = tpi, ..., tpi

)
,

up to 2 reports of subjective assessments of HIV status
(
bi(t), t = tbi, ..., tbi

)
, up to 3 HIV

test results (collected in the 2004, 2006 and 2008 rounds), and a vector of �xed characteris-

tics: region of residence, schooling level, year of birth, age of marriage, polygamy status of

husband, and household's land.

I also use an auxiliary sample containing data on 612 households from the IHS-2 dataset.
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The information on the jth household consists of household annual aggregate consumption

expenditure (yj), and a vector of household characteristics: region of residence, age of woman

(head or wife of the head of the household), number of children, and household's land.

The �rst step of the econometric implementation involves estimating the parameters of

the income function (Equation 1) by ordinary least squares regression using the auxiliary

sample. The rest of the model parameters are estimated using maximum likelihood, tak-

ing the parameters of the income and survival functions as given. The likelihood function

contains the following elements: (1) belief reports probabilities; (2) fertility outcomes proba-

bilities; (3) actual HIV status and survival; and (4) unobserved type probabilities. I proceed

by describing the contribution of each of these elements to the likelihood.

4.1 Beliefs

The perceived infection hazard is estimated using the data on subjective assessments of

HIV-status. Let Bi(t) be woman i's perceived probability of being HIV-positive at period

t and bi(t) be the number of beans she allocates to being HIV-infected in the expectations

elicitation exercise. I make the following two assumptions regarding the relationship between

a woman's belief and the recorded number of beans. First, I assume that beliefs are reported

with some noise. Speci�cally, the reporting error, εbi(t), is assumed to be iid across time and

women:

εbi(t) ∼ iidN (0, σb) .

Second, I assume that each discrete �bean category� corresponds to a probability interval.19

A respondent reports the number of beans corresponding to the interval in which her belief

added to the reporting error falls. The reports are assumed to be made according to the

19As in Delavande and Kohler (2009)
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following rule:20

bi(t) = 0, 1 if Bi(t) + εbi(t) ≤ 0.15,

bi(t) = 2 if 0.15 < Bi(t) + εbi(t) ≤ 0.25,

...

bi(t) = 10 if 0.95 < Bi(t) + εbi(t).

Let Ωd
i be the set of initial conditions for woman i. It contains the deterministic (and

observable) elements of the state space. That is, it contains her permanent characteristics

that enter the perceived hazard function. I de�ne it to also contain the woman's testing

variables (timing and results of tests). Although the woman does not forecast getting tested,

I treat this information as part of the initial conditions for the econometric implementation.

The woman's sequence of life-cycle beliefs are determined given these initial conditions and

her unobserved type, and can be written as B
(
t | Ωdi , typei = j

)
. The probability of observing

bi(t), conditional on the set of woman i's initial conditions and her unobserved type is given

by

Pr
(
bi(t) = 0, 1 | Ωdi , typei = j

)
= Φ

(
0.15−B(t | Ωdi , typei=j)

σb

)
,

Pr
(
bi(t) = 2 | Ωdi , typei = j

)
= Φ

(
0.25−B(t | Ωdi , typei=j)

σb

)
− Φ

(
0.15−B(t | Ωdi , typei=j)

σb

)
,

...

Pr
(
bi(t) = 10 | Ωdi , typei = j

)
= 1− Φ

(
0.95−B(t | Ωdi , typei=j)

σb

)
,

where Φ is the cumulative distribution function of the the standard normal distribution.

As shown in Figure 1, the percentage of women reporting each bean category generally

decreases with the number of beans. The percentage of women who report �ve beans, 8.78

percent , is higher than the two categories below (3.41 percent report four beans and 6.52

20Figure 3 shows the distributions of reported beliefs in the 2006 and 2008 rounds. There is a big drop
in the percentage of women choosing the 0-bean category and the number of women who choose the 1-bean
category doubles. My model would not be able to generate this shift. For my empirical analysis, I treat the
0 and 1-bean categories as a single category.
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percent report three) and is also signi�cantly higher than the next category (1.59 percent

report six). My model is not likely to capture this pattern. I therefore assume that the

probability interval corresponding to the �ve bean category is larger, implying that some of

the women who would allocate 4 or 6 beans to the likelihood of being HIV-positive under

the rule described above, report instead 5 beans. The probability of observing 5 beans is

assumed to be

Pr
(
b(t) = 5 | Ωdi , µi = j

)
= Φ

0.65−B
(
t | Ωdi , typei = j

)
σb

− Φ

0.35−B
(
t | Ωdi , typei = j

)
σb

 .

4.2 Fertility

The parameters of the utility function are estimated using the data on pregnancy out-

comes. As described in Section 3.6, the solution to a woman's optimization problem is

to become pregnant at period t if the preference shock, εpi(t), is bigger than the critical

value ε∗(Ωd
i (t), t, typei). Conditional on the woman's type and the observable elements of

the woman's state space at time t, the probability of the woman's choice to become pregnant

is given by

Pr
(
pi(t) = 1 | Ωdi (t), typei = j

)
= 1− Φ

(
ε∗(Ωdi (t), t, typei)

σp

)
,

Pr
(
pi(t) = 0 | Ωdi (t), typei = j

)
= Φ

(
ε∗(Ωdi (t), t, typei)

σp

)
.

Conditional on the set of initial conditions and the unobserved type, the probability of

observing a sequence of belief reports is independent from the probability of observing a

sequence of fertility outcomes. This is because the set of initial conditions and type map

deterministically into the sequence of life-cycle beliefs.

4.3 Actual Infection Process

Given the assumption of no symptoms, the state space does not contain actual HIV status

beyond any HIV test results that women have received. It is therefore not necessary to recover

the actual hazard process for estimation of the decision-model parameters. For each possible
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state, the estimated model generates a probability of becoming pregnant conditional on being

alive at that state. I do need an estimate of the actual hazard process for my counterfactual

analysis, however. To study the e�ect of di�erent policy interventions on outcomes of life-

cycle fertility and child mortality, I include the infection and mortality processes in the

simulations.

I assume an actual HIV infection hazard rate with a functional form similar to that of the

perceived infection hazard described in equation (2). Information about the hazard process

is contained in the HIV test results, the age in which the tests were taken, and the ages in

which a woman is last observed (regardless of testing histories). I de�ne Hi to be a vector of

a woman i's testing and survival information: the oldest age in which she had a negative test

result (if ever), the earliest age at which she received a positive test result (if ever), and the

latest age in which she is observed in the data. The probability of observing a woman with

testing survival history Hi, conditional on her type and observable elements of her initial

state is given by

Pr
(
Hi | Ωd

i , typei = j
)
.

I present the details of how this probability is computed in the appendix.

4.4 Type Distribution

A multinomial logit speci�cation is used for the type probabilities. The probability that

woman i is of type j is given by

Pr
(
typei = j | Ωdi

)
=

exp(w′tiγj)
1+

∑J
k=1 exp(w′tiγk)

, j = 1, ..., J,

Pr
(
typei = 0 | Ωdi

)
= 1

1+
∑J
k=1 exp(w′tiγk)

,

where wti is a vector of woman's initial conditions, including region of residence, schooling

level, age of marriage, whether she is married to a polygamous husband, year of birth, and

the number of children she had in the �rst period observed interacted with the age she was
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when �rst observed. The last term is included to take into account the fact that not all

the women are observed from the time of their marriage. The state in which they are �rst

observed depends on past decisions and therefore on their unobserved type.

4.5 Likelihood Function

The contribution of woman i to the sample likelihood is given by

Li =
J∑
j=0

 tp∏
t=tp

Pr
(
pi(t) | Ωd

i (t), typei = j
) tb∏

t=tb

Pr
(
bi(t) | Ωd

i , typei = j
)

×
(

Pr
(
Hi | Ωd

i , typei = j
))

Pr
(
type = j | Ωd

i

)
.

5 Estimation Results

5.1 Parameter Estimates

The model is �t with four unobserved types.21 Recall that the types can di�er with respect to

their preferences for children, the assigned probabilities to the accuracy of HIV test results,

and the perceived and actual exposure to HIV infection. The four types have distinctively

di�erent beliefs and characteristics. As seen in Table 12, type 0 women, who represent 28

percent of the sample, have the largest share of women with some secondary education and

the lowest share of women married to polygamist men. They assign no likelihood to being

infected throughout their life cycle. Type 1s, comprising 23 percent of the sample, have

the highest share of women with no schooling and the youngest age of marriage. Type 2s,

comprising only 2.1 percent of the sample, perceive the highest exposure to HIV infection.

On average, women of that group assign probabilities of 0.59 and 0.69 to being infected when

21There were signi�cant improvements in model �t beyond three types. I did not attempt to �t the model
with more types because of computational burden.
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they are 20 and 40 years old respectively. Type 3 women are the biggest group, representing

47 percent of the sample.

Tables 7 to 11 report the parameter estimates and their standard errors. As can be seen

in Table 7, the marginal utilities of additional children are positive for the �rst child and

are decreasing with the stock of surviving children for all women. However, the pro�le of

these marginal utilities varies with region of residence, schooling level, polygamy status and

unobserved type. Relative to women with lower levels of education, women who attended

secondary school have the highest marginal utility for the �rst child but the marginal utility

declines at the fastest rate with the number of children. The same is true for women from

Rumphi district relative to women from the other two districts and for type 1 women relative

to the other types.

The childbearing costs, which are assumed to depend only on a woman's age, are esti-

mated to be positive and increasing with age. The cost for the youngest age group (less than

20 years) is 25 percent of that for women of ages 20 to 24 and only about one percent of the

cost for women of ages 40 to 44. The cost of consecutive pregnancies, on the other hand, is

estimated to be decreasing with age.

5.2 Model Fit

To assess model �t, I compare the model's prediction of the distributions of reported beliefs

and pregnancy probabilities to the distributions of actual beliefs and pregnancies observed

in the data. I simulate each observed woman 100 times. The simulation starts from the age

a woman is �rst observed and takes as given the observable elements of the state space (her

constant characteristics, pregnancy in previous period, and the number and ages of children

younger than four years). For each simulation, I draw an unobservable type from the type

distribution and preferences shocks.

Figures 4 and 5 and Table 13 compare the fertility and belief reporting outcomes predicted

by the model to the actual outcomes observed in the data. Figure 4 shows that the model
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is able to generate the shape of the reported beliefs distribution. It under-predicts the

proportion of women in the lowest bean category by about 4 percentage points and over-

predicts the proportions in the 2 and 3-bean categories. As described in section 4, I assume

that some of the respondents round and report �ve beans instead of four and six. 13.8

percent of belief reports in the data are of the four to six-bean categories; the model predicts

13.6 percent.

Figure 5 depicts the actual and predicted annual pregnancy probabilities for di�erent age

groups. The model captures the decline in pregnancy probabilities with age. This pattern

is generated by the diminishing marginal utility of additional children and childbearing

costs, which increase with age. Table 13 shows the actual and predicted annual pregnancy

probabilities by region, schooling level, and polygamy status of the husband.

6 Counterfactual Analysis

Having estimated the structural model parameters, I use the model to perform counterfactual

experiments to quantify the e�ect of the HIV/AIDS epidemic on fertility outcomes in the

given environment and to evaluate the impacts of di�erent policy interventions. I do so by

simulating the women's life-cycle fertility decisions in di�erent environments. As with the

previous simulations, performed to assess goodness of �t, each woman is simulated 100 times.

However, in the counterfactual simulations I also incorporate infection and mortality. That

is, women are exposed to HIV infection according to the estimated actual infection hazard

process, and, once infected, they are exposed to the mortality process. Survival probabilities

of children of ages zero to three depend on the HIV status of the mother at time of birth

according to the rates in Table 6.

For the counterfactual simulations, I use a younger subsample of the 509 women who were

born after 1978. I exclude the older women to have the composition of the sample, in terms

of characteristics and types, minimally a�ected by survival to the time in which women are
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�rst observed. The characteristics of the sample used in the counterfactuals is presented in

Table 14. I de�ne the baseline environment to be with the levels of perceived and actual

hazards of infection estimated by the model, but without any HIV tests. Results of the

baseline environment simulation are presented in Panel A of Table15. The table includes

the average beliefs and infection rates at di�erent points of the women's life-cycle, number

of life-cycle births as well as the average number of child mortality experienced by a woman.

The results are shown for the full sample as well as by type.

To assess how fertility outcomes would have been di�erent were there no HIV, I simulate

fertility in an environment with no HIV (and no beliefs about HIV). These results are

presented in Panel B of Table 15. Comparison of fertility outcomes in the two environments

indicates that HIV has a negative average e�ect on fertility for the given group of women.

The average number of births during a woman's life in the no-HIV environment is 7.22 in

comparison to 7.07 in the baseline environment.22 Although the total amount of births is

lower in the baseline environment, the total incidents of child mortality is higher by seven

percent as the percentage of children not surviving to age beyond age 4 increases to 17.5

percent from 15.8 percent in the presence of HIV.

Eighty-�ve percent of the women will experience the same number of births in both

environments, three percent will have higher fertility in the HIV environment and twelve

percent will experience fewer pregnancies. The women who have higher fertility in the

presence of HIV are of two groups. The �rst group includes women who are infected with

HIV but assign relatively low probability to being infected. They respond to experienced

child mortality (due to mother to child transmission) by having additional pregnancies. The

second group is of women who have high valuation of children and would increase fertility

early in their life-cycle in anticipation that some of their children might die. However, the

overall average reduction in fertility in the presence of HIV is largely due to the shorter

life-span of women infected with HIV as well as women that choose to reduce fertility as

22The life-cycle number of births is higher than the national total fertility rate estimated at 6 pregnancies
per woman because fertility rates are higher in rural areas of Malawi.
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they assign lower probabilities to their own as well as their children survival in the future.

There is heterogeneity in the e�ect of HIV on fertility by women's characteristics. The

average di�erence for type 0 women is only 0.03. Because they do not assign any likelihood to

being infected, it is completely due to the increase in mother and child mortality by infected

women. Type 1s experience an average of 0.17 fewer pregnancies in the presence of HIV

although this group has the highest share of women (8 percent) who actually increase fertility

in that environment. Type 3s are the most a�ected, with a di�erence of 0.2 pregnancies.

Women from Balaka, with the highest HIV prevalence and highest average likelihood women

assign to being infected, will have on average 0.31 more births in the no-HIV environment

while women from Mchinji and Rumphi will have on average 0.08 and 0.1 more births

respectively.

The fertility outcomes are a�ected by perceived as well as actual exposure to HIV. As

expected, the di�erence in the number of births in the two environments depends not only

on whether a woman got infected during the fertile stage of her life cycle but also on when in

the life cycle she got infected. Women who got infected by age 25 (5.1 percent of the sample)

experience 1.57 less births in the baseline environment relative to the no-HIV environment.

Women who got infected by age 45 (11.6 percent of the sample) experience a reduction of

0.84 births and women who did not get infected by the end of their fertile stage, experience

an average di�erence of 0.06 births.

To separate the e�ect of women's shorter life-span on the number of births from the other

channels through which HIV can a�ect fertility (child mortality and survival expectations),

I count pregnancies in the no-HIV environment which occurred only in periods in which

women would have been alive in the baseline environment. This brings the average number

of births down to 7.1, only 0.03 higher than the number in the baseline environment. During

these periods, women of types 0 and 1 experience fewer births in the no-HIV environment,

by 0.01 and 0.08 respectively. Type 2s and 3s experience more births. Type 2s, who have the

highest beliefs about being infected, experience on average 0.19 more births and Type 3s,
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the largest group in the sample, experience 0.1 more births. Regardless of whether women

decrease or increase the number of births in the presence of HIV, most of the divergence in

fertility rates happens in the second half of the women's fertile stage of the life-cycle. This

is because older women assign higher likelihood to being infected, they are more likely to

actually be infected, and the marginal utility from additional child reduces with the number

of children.

In Panel C of Table 15 I present results from a simulation of an environment in which

there is no mother-to-child transmission. This simulation can be thought of as an assessment

of the potential e�ect of provision of antiviral treatment that prevents such transmission.23

In the simulation, child mortality probabilities of children born to HIV-infected women are

equated to those of children born to HIV-negative women. The average number of life-cycle

births in this environment is 7.05, a slight di�erence from the 7.07 births experienced in the

baseline environment. Although the reduction in expected and experienced child mortality,

less than one percent of women will change the number of births they give.

To study the impact of HIV testing on fertility outcomes, I simulate life-cycle fertility

in counterfactual scenarios in which the respondents are o�ered a single test in di�erent

points in their life cycle: at the time of their marriage (age 17 on average), age 25 and age

35. The impact of testing on outcomes depends on how women update their beliefs after

learning their test result. This updating depends on the discrepancy between the beliefs and

actual HIV status and on the accuracy women assign to test results. The extent to which

testing will a�ect outcomes is expected to be limited given the estimated low probabilities

most women assign to the accuracy of test results (presented in Table10). In addition, the

impact of testing also depends on the extent to which the updated beliefs alter the relative

valuation of women's choices. This can vary with age and the number of children a woman

has as life horizon shortens and marginal utility from additional children reduced. It is also

important to keep in mind that while the test result gives information about one's status

23In high-income countries, the rate of mother-to-child transmission has been reduced to less than one
percent (unaids.org).
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in the present, women's decisions are also a�ected by perceived exposure to infection in the

future. A woman receiving a negative test result, for example, might not change by much

her survival expectations if she believes she is in high risk of getting infected in the periods

just after the test.

The results of simulating testing at age of marriage and ages 25 and 35 are presented in

Panels D, E, and F respectively. 1.3 percent of women are simulated to be infected at the

time of their marriage, 4.1 percent at age 25 and 5.7 percent at age 35. At ages 25 and 35,

women have already given 3.3 and 6.1 births on average. All three simulations result in a

negligible e�ect on the average number of births and child mortality women experience over

their life-cycle. As expected, type 0s and 1s, who assign probabilities of zero and 0.03 to

the accuracy of the test result, do not alter their choices. Type 2s all receive negative test

results. However, given the probability of 0.21 they assign to the accuracy of the test results

and their high perceived risk of infection, the total average number of births they give does

not change. Type 3s, who assign the highest probability of 0.76 to the accuracy of the test

results, reduce their fertility after receiving a positive test result. The group that received

a positive test result at the time of marriage reduced the average number of births by 0.42,

from 4.98 to 4.56. The women of type 3 who receive a positive test result at ages 25 and

35 have 0.39 and 0.21 fewer births. The smaller e�ect at age 35, relative to that when tests

were given in earlier ages, is partially due to the fact that mortality from HIV accelerates

with age, leaving the women fewer periods during which to make fertility choices.

Finally, in Panel G of Table 15 I present a simulation of a scenario in which women are

o�ered a test at age 25. Unlike the former testing simulations, women perceive the test result

as accurate and fully update their beliefs after receiving a test result. There is a negligible

e�ect on the overall average number of births and experienced child mortality. There is very

little impact on the fertility behavior of women who receive a negative test result. Women

who receive a positive test result, however, see an average reduction of 0.19 in the number

of births. HIV-positive women of type 0 and 1, who do not reduce fertility in the results
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presented in Panel E, have 0.07 and 0.05 less births in this environment. Type 3s who receive

a positive test result have 0.57 fewer births than in the baseline environment.

7 Conclusion

In this paper, I speci�ed and structurally estimated a dynamic model of fertility in an

environment with high HIV prevalence. My analysis takes into account uncertainty about

HIV status and the discrepancies between perceived and actual exposure to HIV infection.

Women's perceptions about their exposure to HIV infection and about their own HIV status

a�ect their beliefs about their own and their children's life expectancy. Beliefs about life

expectancies, in turn, a�ect fertility choices by changing the pro�le of expected lifetime

utilities associated with each choice. I estimate the model parameters by maximum likelihood

with longitudinal data from the Malawi Di�usion and Ideational Change Project, which

contain measures of subjective beliefs about own HIV status. The model �ts well the fertility

patterns in the data, as well as the distribution of reported beliefs about own HIV status.

Model simulations are informative about how HIV a�ects fertility and about the impact

of policies aimed at reducing HIV, such as HIV testing programs and provision of antiviral

therapy, on fertility and child mortality. Results show that the presence of HIV reduces

fertility, both for women who are infected and who are not infected. The presence of HIV

reduces the average number of life-cycle births by 0.15. I also �nd that HIV testing is e�ective

at reducing fertility of infected women, leading to a reduction in child mortality and orphan

hood; however, the partial updating of beliefs following a test mitigates this e�ect. I also

�nd that prevention of mother-to-child transmission through dissemination of antiviral drugs

would have a negligible e�ect on the average number of life-cycle births, although it reduces

the incidence of child mortality.
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A Tables and Figures

Table 1: Descriptive Statistics
All Balaka Mchinji Rumphi

Variable (South) (Center) (North)

Region: Balaka 0.29 - - -

Mchinji 0.35 - - -

Rumphi 0.36 - - -

Education: No school 0.14 0.31 0.15 0.01

Primary 0.73 0.66 0.8 0.73

Secondary 0.12 0.03 0.05 0.26

Land>1 hectare 0.44 0.19 0.53 0.55

Polygamy 0.27 0.2 0.27 0.33

Age of Marriage 17.54 17.02 17.56 17.93

(2.25) (2.28) (2.03) (2.35)

Age 2004 26.63 25.99 25.75 28.01

(8.09) (8.44) (7.21) (8.45)

Number of observations 1006 355 288 363

Table 2: Test Take-up and Percentage Tested Positive by Year of Test
2004 2006 2008

% N % N % N

Took Test 87.9% 620a 93.28% 759a 94.6% 741a

Tested positive 2.94% 545b 3.11% 708b 3.71% 701b

a Number of women who were o�ered to take a HIV test for the given year
b Number of women tested for the given year
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Table 3: Reported Belief about Own HIV Infection, Measured in Beans: 2006 and 2008
pooled

Mean sd N

All 1.52 2.13 1640

Region Balaka 1.78 2.16 462

Mchinji 1.69 2.24 565

Rumphi 1.16 1.96 613

Schooling No school 1.77 2.2 230

Primary 1.55 2.18 1214

Secondary 1.06 1.67 196

Polygamy Mono 1.35 1.35 1188

Poly 1.95 2.44 452

Age ≤26 1.41 2.02 658

>26 1.59 2.21 982

Figure 1: Belief Distribution, 2006 and 2008 pooled
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Figure 2: Beliefs by Test Result, 2006 and 2008 pooled

Table 4: Annual Pregnancy Probabilities
Age Group

16-20 21-25 26-30 31-35 36-40 41-45

All Prob. 0.405 0.377 0.307 0.273 0.211 0.06

N 412 778 698 539 370 351

Region Balaka Prob. 0.414 0.398 0.323 0.31 0.281 0.086

N 162 226 155 142 121 81

Mchinji Prob. 0.369 0.357 0.32 0.267 0.177 0.082

N 130 319 291 172 113 85

Rumphi Prob. 0.433 0.382 0.282 0.253 0.176 0.038

N 120 233 252 225 136 185

Schooling None Prob. 0.375 0.492 0.27 0.263 0.31 0.085

N 24 61 89 95 84 82

Primary Prob. 0.395 0.366 0.315 0.281 0.183 0.053

N 332 596 520 381 262 247

Secondary Prob. 0.482 0.372 0.292 0.238 0.167 0.045

N 56 121 89 63 24 22

Polygamy Mono Prob. 0.412 0.388 0.309 0.285 0.23 0.077

N 354 605 511 396 235 196

Poly Prob. 0.362 0.335 0.299 0.238 0.178 0.039

N 58 173 187 143 135 155
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Table 5: Parameter Estimates of the Survival-after-Infection Function
Age Group

15-19 20-24 25-29 30-34 35-39 40-44 45-49

ψτ , Weibull scale parameter 16.0 15.4 14.1 12.1 11.0 10.1 7.9

Median survival years after infection 13.3 12.8 11.7 10.0 9.1 8.4 6.6

Estimated by Hallett et al. (2008)

Table 6: Child Mortality Rates per 1000 Person-Year, by Mother HIV status
Child's Age

0 1 2 3-4

Mother HIV-negative at birth 115 26 18 8

Mother HIV-positive at birth 331 128 87 41

Source: Crampin et al. (2003)

Figure 3: Belief Distribution, by Year
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Table 7: Maximum-Likelihood Parameter Estimates: Preferences
Parameter Description Estimate SE

φ CRRA parameter 1.066 0.051

λ1 Child-consumption interaction -0.166 0.052

λ2 - type 0 N(t), Number of children, type 0 767.4 1282.58

λ2 - type 1 N(t), Number of children, type 1 1501 1150.40

λ2 - type 2 N(t), Number of children, type 2 698.8 3475.82

λ2 - type 3 N(t), Number of children, type 3 1082 1206.99

λ2 - Balaka N(t), Balaka shifter 161 450.07

λ2 - Rumphi N(t), Rumphi shifter 637 563.72

λ2 - primary N(t), Primary shifter -393.6 624.67

λ2 - secondary N(t), Secondary shifter 196.6 785.85

λ2 - poly N(t), Polygamy shifter -251.5 420.21

λ3 - type 0 N(t)2, type 0 shifter -55.08 98.12

λ3 - type 1 N(t)2, type 0 shifter -136.9 85.09

λ3 - type 2 N(t)2, type 0 shifter -24.78 302.23

λ3 - type 3 N(t)2, type 0 shifter -24.76 89.28

λ3 - balaka N(t)2, Balaka shifter 17.31 46.05

λ3 - rumphi N(t)2, Rumphi shifter -57.22 61.50

λ3 - primary N(t)2, Primary shifter 6.743 64.29

λ3 - secondary N(t)2, Secondary shifter -72.04 86.07

λ3 - poly N(t)2, Polygamy shifter 0.7026 43.84

λ4 Pregnancy, p(t) 133.6 4966.52

λ4 - age 20-24 p(t), age 20-24 shifter 400.3 706.72

λ4 - age 25-29 p(t), age 25-29 shifter 2,432 679.71

λ4 - age 30-34 p(t), age 30-34 shifter 3,653 816.29

λ4 - age 35-39 p(t), age 35-39 shifter 5,624 1132.3

λ4 - age 40-44 p(t), age 40-44 shifter 10,680 2073.07

λ5 Consecutive pregnancy, p(t)p(t− 1) 8,511 1799.57

λ6 Consecutive-age interaction, p(t)p(t− 1)t -218.7 92.89

σp Standard deviation of preference shock 6,698 1291.56

δ Discount factor 0.8675 0.073

Table 8: Ordinary Least Squares Parameter Estimates: Income Function
Parameter Description Estimate SE

θ1 Constant 10.619 0.135

θ2 Balaka -0.0717 0.046

θ3 Mchinji -0.092 0.049

θ4 Land High 0.4295 0.039

θ5 Number of children, N(t) 0.0499 0.011

θ6 Period, t 0.0118 0.007

θ7 Period squared, t2 -0.0002 0.0001

σy Standard deviation of income shocks 0.536407 0.065
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Table 9: Maximum-Likelihood Parameter Estimates: Infection Hazard Function, Perceived
and Actual

Perceived Actual

Parameter Estimate SE Estimate SE

Constant, type 0 -8.05 1E+07 -12.6 2.448

Constant, type 1 -4.298 0.815 -9.611 1.652

Constant, type 2 0.1935 5.164 -17.51 1340.9

Constant, type 3 -8.311 2.420 -11.38 2.085

Period, type 0 -0.08 2E+07

Period, type 1 -0.0414 0.123

Period, type 2 -0.2406 0.281

Period, type 3 0.1208 0.225

Period squared, type 0 -1.88 9E+06

Period squared, type 1 0.0004 0.004

Period squared, type 2 0.0057 0.009

Period squared, type 3 -0.001 0.006

Period 0.1587 0.223

Period squared -0.0053 0.007

Duration of marriage 0.0662 0.053 0.0171 0.099

Primary 0.6926 0.392 2.231 0.672

Secondary 0.5547 0.885 2.891 1.054

Land > 1 hectare 0.1973 0.213 0.3524 0.441

Polygamy 0.3766 0.296 0.5221 0.571

Balaka 0.126 0.319 2.245 0.609

Rumphi -2.48 5.180 1.824 1.072

Table 10: Maximum-Likelihood Parameter Estimates: Other Parameters Related to Beliefs
Parameter Description Estimate SE

ptest, type 0 Test result accuracy, type 0 0 21.236

ptest, type 1 Test result accuracy, type 1 0.0301 0.115

ptest, type 2 Test result accuracy, type 2 0.2084 0.193

ptest, type 3 Test result accuracy, type 3 0.7668 0.222

σb Standard deviation of reporting error 0.25 0.009

Table 11: Maximum Likelihood Parameter Estimates: Type Distribution Parameters
Type 1 Type 2 Type 3

Parameter Estimate SE Estimate SE Estimate SE

Constant -1.748 2.614 -5.543 30.05 -3.207 2.593

Balaka -1.275 1.297 -0.39 29.87 -1.685 1.324

Rumphi -3.775 2.453 5.68 29.13 -2.887 2.086

Primary -0.8293 1.412 -3.453 3.112 1.31 1.744

Secondary -1.93 2.569 -10.28 345.8 -0.4232 2.914

Polygamy 1.688 1.112 1.793 1.011 1.03 1.128

Age of marriage 0.2263 0.242 -0.0397 0.296 0.3614 0.225

Year of birth 0.2532 0.154 0.125 0.197 0.2245 0.151

N(t)× t -0.0011 0.011 -2E-05 0.019 -0.0036 0.010
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Table 12: Predicted Selected Characteristics by Unobserved Type
Type 0 Type 1 Type 2 Type 3

Region Balaka 0.27 0.46 0.02 0.24

Mchinji 0.10 0.42 0.01 0.46

Rumphi 0.63 0.11 0.97 0.30

Schooling None 0.18 0.29 0.07 0.05

Primary 0.62 0.62 0.93 0.85

Secondary 0.20 0.09 0.001 0.10

Polygamous 0.25 0.32 0.6 0.25

Year of Birth 1971 1981 1975 1979

Age of Marriage 17.3 17.1 16.9 17.9

Prob. assigned to being HIV-positive :

Age 20 0 0.16 0.59 0.01

Age 30 0 0.29 0.65 0.03

Age 40 0 0.39 0.69 0.13

Share of sample 0.28 0.23 0.02 0.47

Figure 4: Model Fit: Actual and Predicted Reported Beliefs

Figure 5: Model Fit: Pregnancy Probabilities, by Age Groups
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Table 13: Model Fit: Actual and Predicted Pregnancy Probabilities
Age Group

15-19 20-24 25-29 30-34 35-39 40-44

Region Balaka A 0.414 0.398 0.322 0.312 0.305 0.086

P 0.408 0.381 0.336 0.305 0.250 0.117

N 162 226 155 138 105 58

Mchinji A 0.369 0.357 0.32 0.268 0.192 0.104

P 0.366 0.350 0.308 0.282 0.231 0.082

N 130 319 291 168 99 67

Rumphi A 0.433 0.382 0.282 0.256 0.183 0.043

P 0.444 0.393 0.290 0.238 0.1743 0.0468

N 120 233 252 223 131 161

Schooling None A 0.375 0.492 0.27 0.264 0.343 0.085

P 0.474 0.388 0.308 0.307 0.254 0.107

N 24 61 89 91 70 59

Primary A 0.395 0.366 0.315 0.283 0.195 0.063

P 0.397 0.367 0.307 0.268 0.207 0.062

N 332 596 520 375 241 208

Secondary A 0.482 0.372 0.292 0.238 0.167 0.045

P 0.428 0.388 0.309 0.228 0.177 0.036

N 56 121 89 63 24 22

Polygamy Mono A 0.412 0.388 0.309 0.286 0.243 0.083

P 0.414 0.378 0.323 0.280 0.225 0.083

N 354 605 511 392 214 156

Poly A 0.362 0.335 0.299 0.241 0.19 0.046

P 0.355 0.350 0.264 0.241 0.196 0.053

N 58 173 187 137 121 130

A = actual, P = predicted, N = number of observations
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Table 14: Selected Characteristics of Subsample Used for Counterfactual Simulations
All By Type

Variable 0 1 2 3

Type 0 0.11 - - - -

1 0.32 - - - -

2 0.02 - - - -

3 0.55 - - - -

Region Mchinji 0.38 0.05 0.44 0.01 0.43

Balaka 0.31 0.21 0.43 0.01 0.27

Rumphi 0.31 0.73 0.13 0.98 0.3

Schooling None 0.08 0.05 0.2 0.01 0.02

Primary 0.76 0.48 0.69 0.99 0.85

Secondary 0.15 0.47 0.10 0 0.12

Polygamous 0.2 0.15 0.25 0.53 0.18

Number 50,900 6,459 16,472 850 27,119

Table 15: Counterfactual Simulations
By Type

All 0 1 2 3

Panel A: Baseline (HIV, without any HIV tests)

Probability assigned to being HIV-positive:

Age 17 0.04 0 0.11 0.50 0.003

Age 25 0.09 0 0.23 0.64 0.02

Age 35 0.16 0 0.35 0.65 0.07

HIV prevalence:

Age 17 0.01 0.004 0.03 0 0.006

Age 25 0.04 0.01 0.10 0 0.02

Age 35 0.06 0.02 0.13 0 0.03

Number of life-cycle births 7.07 6.13 6.28 6.47 7.72

Child Mortality 1.24 1.03 1.22 1.06 1.29

Panel B: No HIV

Number of life-cycle births 7.22 6.16 6.44 6.61 7.90

Child Mortality 1.14 0.99 1.02 1.06 1.24

Panel C: No mother-to-child transmission

Number of life-cycle births 7.05 6.13 6.24 6.46 7.72

Child Mortality 1.13 1.00 1.00 1.06 1.23
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All Type 0 Type 1 Type 2 Type 3

Panel D: HIV test at period of marriage

Probability assigned to being HIV-positive:

Age 17 0.04 0 0.11 0.44 0.004

Age 25 0.09 0 0.23 0.59 0.02

Age 35 0.16 0 0.35 0.63 0.07

Number of life-cycle births 7.07 6.13 6.28 6.47 7.72

Child Mortality 1.24 1.03 1.22 1.05 1.29

Panel E: HIV test at age 25

Probability assigned to being HIV-positive:

Age 25 0.09 0 0.23 0.51 0.02

Age 35 0.15 0 0.34 0.58 0.07

Number of life-cycle births 7.07 6.13 6.28 6.47 7.72

Child Mortality 1.24 1.03 1.22 1.06 1.29

Panel F: HIV test at age 35

Probability assigned to being HIV-positive:

Age 35 0.13 0 0.34 0.52 0.04

Number of life-cycle births 7.07 6.13 6.28 6.46 7.73

Child Mortality 1.24 1.03 1.22 1.06 1.29

Panel G: HIV test at age 25, assigning full accuracy to test results

Probability assigned to being HIV-positive:

Age 25 0.04 0.01 0.10 0 0.02

Age 35 0.14 0.01 0.29 0.42 0.07

Number of life-cycle births 7.06 6.13 6.27 6.50 7.72

Child Mortality 1.23 1.03 1.22 1.05 1.29
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B Speci�cation of the infection hazard function (Section

3.4)

The perceived probability of getting infected at period t, conditional on not getting infected

before is given by

h(t) =
1

1 + exp (−x(t)′β)
,

where

x (t)′ β = β1 + β2,µt+ β3,µt
2 + β4Marriage Duration + β5Primary

+β6Secondary + β7Land High + β8Poly + β9Balaka + β10Rumphi.

The parameters related to age and age squared are allowed to vary with unobserved type

(µ). As described in section 4.3, the same speci�cation is used for the actual infection hazard

process, with h replaced by h̃ and β replaced by β̃.
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C Updating beliefs after testing (Section 3.5)

I want to solve for P̂ (τ) , τ = 1, ..., ttest from the system of equations presented in Equation

10:

P̂ (τ)S (τ, ttest)

1−
∑ttest

k=1 P̂ (k) (1− S(k, ttest))
= G (τ, ttest) B̂ (ttest) , τ = 1, ..., ttest

Isolating P̂ (τ) :

P̂ (τ)S (τ, ttest) =
[
1−

∑ttest
k=1 P̂ (k) (1− S(k, ttest))

]
G (τ, ttest) B̂ (ttest) , τ = 1, ..., ttest

P̂ (τ) =
[
1−

∑ttest
k=1,k 6=τ P̂ (k) (1− S(k, ttest))

]
G(τ, ttest)B̂(ttest)

S(τ, ttest)+(1−S(τ, ttest))G(τ, ttest)B̂(ttest)
, τ = 1, ..., ttest

Introducing notation:

1. ψ (τ, ttest) = G(τ, ttest)B̂(ttest)

S(τ, ttest)+(1−S(τ, ttest))G(τ, ttest)B̂(ttest)
, τ = 1, ..., ttest

2. ζ (τ, ttest) = ψ(τ, ttest) (1− S(τ, t)) , τ = 1, ..., ttest

3. Num(τ) = ψ(τ, ttest)
∏ttest−1

i=1,i6=τ (1− ζ(i, ttest))

4. Den (τ) = 1− 1
2

∑ttest−1
k=1 ζ(k, ttest)

(∑ttest−1
i=1,i6=k ζ(i, ttest)

)
+2

3

∑ttest−1
k=1 ζ(k, ttest)

(∑ttest−1
i=1,i6=k ζ(i, ttest)

(∑ttest−1
m=1,m6=k,m6=i ζ(m, ttest)

))
− · · ·+ [−1]ttest ttest−2

ttest−1

∏ttest−1
i=1 ζ (i, ttest)
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The solution to the system of equations is given by:

P̂ (τ) = Num(τ)
Den(τ)

, τ = 1, ..., ttest − 1

P̂ (ttest) = ψ (ttest, ttest)
[
1−

∑ttest−1
k=1 P̂ (k) (1− S (k, ttest))

]
, τ ≥ ttest
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D Probabilities of Actual HIV and Survival History (Sec-

tion 4.3)

Let h̃(t) be the actual HIV infection hazard rate. The functional form is assumed to be

similar to that of the perceived infection hazard described in equation (2). The probability

of getting infected at t, conditional on being HIV-negative until then, is given by

h̃(t) =
1

1 + exp
(
−x(t)′β̃

) .
The unconditional probability of getting infected at period t is given by

P̃ (t) = h̃(t)
t−1∏
k=1

(
1− h̃(k)

)
.

Information about the hazard process is contained in the HIV test results, the age in

which the tests were taken, and the ages in which a woman is last observed (regardless of

testing histories). Let ti represent the age in which a woman is last observed (and is therefore

known to be alive at that age). Let t−i be the oldest age in which a woman is observed to get

a negative test result. Let t+i be the youngest age a woman is observed to receive a positive

test result. Let Hi =
(
t−i , t

+
i , ti

)
be the vector of observed �HIV history� of woman i, with t−i

(t+i ) equaling zero if a woman is never tested negative (positive). Women's �HIV histories�

belong to one of the following 4 categories:

1. Never tested:

The probability of observing a woman who was never tested alive at ti, conditional on

her initial conditions and unobserved type, is given by

Pr
(
Hi =

(
0, 0, t

)
| Ωd

i , typei = j
)

= Pr
(
alive at t

)
= 1−

ti∑
k=1

P̃
(
k | Ωd

i , typei = j
) (

1− S(k, ti)
)
.

2. Tested only negative:

The probability of observing a woman who was only tested negative and is alive at ti,
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conditional on her initial conditions and unobserved type, is given by

Pr
(
Hi =

(
t−, 0, t

)
| Ωd

i , typei = j
)

= Pr
(
negative at t−, alive at t

)

=
∏t−

k=1

(
1− h̃(k)

) [
1−

∑t
k=t−+1 h̃

(
k | Ωd

i , typei = j
)∏k

j=t−+1

(
1− h̃

(
j | Ωd

i , typei = j
)) (

1− S
(
k, t

))]

=
∏t−

k=1

(
1− h̃(k)

)
−
∑t

k=t−+1 P̃
(
k | Ωd

i , typei = j
) (

1− S
(
k, t

))
.

3. Tested only positive:

The probability of observing a woman who if infected by t+ and alive at t, conditional

on her initial conditions and unobserved type, is given by

Pr
(
Hi =

(
0, t+ , t

)
| Ωd

i , typei = j
)

= Pr
(
got infected before t+, alive at t

)

=

t+∑
k=1

P̃
(
k | Ωd

i , typei = j
)
S
(
k, t

)
.

4. Seroconverter:

The probability of observing a woman who is known to be HIV-negative until t−,

positive by t+, and alive at t
(
t− < t+ ≤ t

)
, conditional on her initial conditions and

unobserved type, is given by

Pr
(
Hi =

(
t−, t+ , t

)
| Ωdi , typei = j

)
= Pr

(
got infected between t− and t+, alive at t

)

=
∑t+

k=t− P̃
(
k | Ωdi , typei = j

)
S
(
k, t

)
.
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